Virulence-associated Genetic Changes in Enterovirus D68 Isolates from the 2014 Outbreak

Brian Aevermann1, Yun Zhang1, Reed Shabman2, Wei Wang2, Suman Das2, Guangyu Sun2, Christopher N. Larsen3, Hongtao Zhao4, Zhiling Gu4, Sherry He4, Edward B. Klem4, Richard H. Scheuermann1,5

1J. Craig Venter Institute, La Jolla, CA, USA; 2J. Craig Venter Institute, Rockville, MD, USA; 3Vecna Technologies, Greenbelt, MD, USA; 4Northrop Grumman Health Solutions, Rockville, MD, USA and 5Department of Pathology, University of California, San Diego, CA, USA

Introduction

- The 2014 Enterovirus D68 (EV-D68) outbreak in the US reported 1,153 confirmed cases including 14 deaths1.
- Between 2012 and 2014, several clusters of Acute Flaccid Myelitis (AFM) cases in Colorado2,3, California4,4, France5, and Norway6 were determined to be EV-D68 positive.
- We explored the potential link between genetic changes in the recent EV-D68 isolates and disease severity in the 2014 EV-D68 outbreak using comparative genomics approaches and the Virus Pathogen Resource7 (VIPR, www.viprbrc.org).

EV-D68 Lineage Relationships

Figure 1. Lineage relationships of EV-D68 isolates inferred from VP1 phylogeny. (A) A RAxML phylogenetic tree of all available full-length VP1 nucleotide sequences as of Feb. 9, 2016 in VIPR. 2013-2014 EV-D68 isolates distribute among three clades, suggesting that three separate lineages of EV-D68 were co-circulating. (B) A close-up of subclade B1. Of note, all isolates associated with AFM belong to this subclade.

Neurovirulence-Phylogeny Correlation

Table 1. Neurovirulence-phylogeny association analysis using the BaTS program8 shows that AI, PS, MC (neurovirulent), and MC (non-neurovirulent) statistics were all significant, suggesting that the neurovirulent phenotype is genetically correlated with phylogenetic structure.

<table>
<thead>
<tr>
<th>Statistic</th>
<th>Observed Mean</th>
<th>95% CI</th>
<th>Null Mean</th>
<th>Null 95% CI</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>AI</td>
<td>1.6079</td>
<td>1.1240 - 2.0944</td>
<td>2.5287</td>
<td>2.0605 - 2.9796</td>
<td>0.0002</td>
</tr>
<tr>
<td>PS</td>
<td>10.1675</td>
<td>10.0000 - 11.0000</td>
<td>11.3886</td>
<td>11.3257 - 12.0000</td>
<td>0.0010</td>
</tr>
<tr>
<td>MC (neurovirulent)</td>
<td>2.0938</td>
<td>2.0000 - 2.0000</td>
<td>1.1985</td>
<td>1.0000 - 1.8685</td>
<td>0.0002</td>
</tr>
<tr>
<td>MC (non-neurovirulent)</td>
<td>82.7851</td>
<td>81.0000 - 3.0000</td>
<td>49.8717</td>
<td>27.6994 - 80.7979</td>
<td>0.0032</td>
</tr>
</tbody>
</table>

*AI: association index; PS: parsimony score; MC: monophyletic clade

Unique Substitutions in Subclade B1

Table 2. Twenty-one unique substitutions were identified in isolates from the EV-D68 B1 subclade in comparison with non-B1 EV-D68 using the Meta-CATS algorithm9 and subsequent sensitivity and specificity filtering. P-values were corrected by a statistical test that specifically corrects for evolutionary correlation among isolates. Twelve of new substitutions are found in equivalent positions of other enteroviruses known to cause neurological symptoms, including EV-D70, poliovirus (PV), and EV-A71 viruses.

<table>
<thead>
<tr>
<th>Position</th>
<th>Substitution</th>
<th>AI</th>
<th>PS</th>
<th>Null Mean</th>
<th>Null 95% CI</th>
<th>Significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>5'UTR/280C</td>
<td>2C/273G</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>VP2/222T</td>
<td>640</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>VP3/24A</td>
<td>5'UTR/262C</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>VP1/290S</td>
<td>5'UTR/339T</td>
<td>0.0001</td>
<td>0.0001</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

*EV-D68 numbering is based on US/CO/13_60.
*PV numbering is based on PV-1 Mahoney NC_002058.
Hypervariable region
* Gap
- Not available

Virulence and Clinical Symptom Distribution

Figure 3. Hypothetical model of enterovirus virulence and clinical symptom distribution. Distributions of disease severity caused by B1, non-B1, and PV isolates are represented by hypothetical curves in red, blue, and green, respectively. For a given isolate lineage, disease severity would be influenced by the genetic background and co-morbidities of the infected individual. Symptomatic threshold (72%) and paralytic threshold (1%) represented by the black dashed lines are based on the clinical features of PV infections10.

Conclusion

- Three distinct clades of EV-D68 were co-circulating during the 2014 outbreak with AFM-associated isolates belonging exclusively to a single phylogenetic subclade B1.
- The B1 subclade has 21 unique substitutions in comparison with other EV-D68 lineages.
- Twelve of these substitutions are observed at the equivalent positions in poliovirus, EV-D70, and/or EV-A71.

Future Plan

We are constructing targeted substitutions in EV-D68 genes based on the substitutions identified above in various reporter constructs to test their effects in a variety of different cell culture model systems.

References

Acknowledgements

We would like to thank the primary data providers for the data that was used throughout this study, the scientific and technical personnel responsible for supporting and developing VIPR, which has been wholly supported by the NIH/NIAID (No. HHSN272201400028C). Laboratory experiments are supported by the NIH/NIAID Respiratory Pathogen Research Center D68 Innovation Component HHSN272201200005.