Phylogenomic and Protein Domain Architecture-based Analysis and Orthology Classification of \textit{Herpesviridae} Proteins

Christian M. Zmasek, Ph.D.

J. Craig Venter Institute
1. Goals
2. Background:
 1. Orthology & protein function
 2. Protein domain architecture
3. Phylogenetic examples from human herpes virus genomes:
 1. DNA polymerase
 2. US22 protein family
4. Strict ortholog groups (definition)
5. Introduction to novel naming convention based on strict ortholog groups
6. *Herpesviridae* core strict ortholog groups examples
7. Availability of resulting data & software
Goals

• A systematic description and **classification** of the entire set of human *Herpesviridae* proteins

• Besides classifying proteins based on their **evolutionary history**, we equally consider their **domain architectures** for classification

• Goal is to classify proteins in groups (which we call "strict groups of orthologs") in which all proteins exhibit the same domain architecture and are being orthologous towards each other

• Furthermore, we attempt to provide and **informative name** for each these groups

• For example a "_aBG" suffix would indicate that proteins of this group are found some (but not all) human *Alphaherpesvirinae* species, and all human *Beta-* and *Gammaherpesvirinae* species
• Homologs are defined as sequences (proteins, genes) which share a common ancestor (Fitch, 1966)

• Homologous sequences can be divided into orthologs, paralogs and xenologs

• **Orthologs**: diverged by a speciation event (their last common ancestor on a phylogenetic tree corresponds to a speciation event)

• **Paralogs**: diverged by a duplication event (their last common ancestor corresponds to a duplication)

• **Xenologs**: are related to each other by horizontal gene transfer (via retroviruses, for example)
Orthology vs Function – Why are we interested in Orthologs?

• Orthologous sequences *tend* to have more similar "functions" than paralogs ("The Ortholog Conjecture")

• **Yet:** Orthologs are mathematically defined, whereas there is no definition of sequence "function" (i.e. it is a subjective term, thus the quotes)
Protein Domain Architecture

- Protein domain architecture: ordered sequence of protein domains in a protein
- Here we use domains forms the Pfam database (https://pfam.xfam.org)
- Examples (including notation) from human herpes virus genomes:
 - Uracil-DNA glycosidase (1 domain): UDG
 - Terminase (2 domains): DNA_pack_N—DNA_pack_C
 - DNA polymerase (2 domains): DNA_pol_B_exo1—DNA_pol_B
DNA Polymerase
US22 Domain Proteins

- early nuclear protein secreted from cells
- virus replication and pathogenesis
- predicted to counter antiviral responses by interacting with specific host proteins
We define "Strict Ortholog Groups" (SOGs) as groups of proteins in which:

- all protein members are orthologous to each other (related by speciation events)
- and exhibit the same domain architecture
Examples:

- _A present in all human *Alphaherpesvirinae* species
- _a present in some human *Alphaherpesvirinae* species
- _aBG present in some human *Alphaherpesvirinae* species and all human *Beta-* and *Gammaherpesvirinae* species
- _ABG.B at least one domain of this architecture is present in all human *Alpha-* , *Beta-* and *Gammaherpesvirinae*, yet the entire architecture is only present in (all) *Betaherpesvirinae*
Examples (3 out of 23):

• Uracil-DNA glycosidase\textunderscore ABG (UL2 ORF59 UL114 U81 BKRF3 ORF46):
 • UDG

• Helicase-primase ATPase subunit\textunderscore ABG (UL5 ORF55 UL105 U77 BBLF4 ORF44):
 • Herpes\textunderscore Helicase

• Terminase\textunderscore ABG (UL15 ORF42 UL89 U66/U60 LMP2 ORF29):
 • DNA\textunderscore pack\textunderscore N—DNA\textunderscore pack\textunderscore C
Core SOGs: "ABG, domain rearrangements"

Examples (2 out of 8):

- **Glycoprotein B_ABG.AbG** (UL27 ORF31 U39 BALF4 ORF8):
 - Glycoprotein_B
- **Glycoprotein B_ABG.b** (UL55):
 - HCMVantigenic_N—Glycoprotein_B

- **DNA polymerase_ABG.a** (UL30):
 - DNA_pol_B_exo1—DNA_pol_B—DNAPolymera_Pol
- **DNA polymerase_ABG.aBG** (ORF28 UL54 U38 BALF5 ORF9):
 - DNA_pol_B_exo1—DNA_pol_B
Core SOGs: "ABG, non-homologous replacement"

Examples (2 out of 9):

Same Pfam clan ("DNA_clamp"), very distantly related:
- DNA polymerase processivity subunit_A (UL42 ORF16): Herpes_UL42—Herpes_UL42
- DNA polymerase processivity subunit_B (UL44 U27): Herpes_PAP
- DNA polymerase processivity subunit_G (BMRF1 ORF59): Herpes_DNAp_acc

Unrelated (?):
- Glycoprotein L_A.a (ORF60): Herpes_UL1
- Glycoprotein L_A.S (UL1): Herpes_UL1--GlyL_C
- Glycoprotein L_B (UL115 U82): Cytomega_gL
- Glycoprotein L_G (BKRF2 ORF47): Phage_glycop_gL
Availability

• **Publication:** in review at "Virology"

• **Data:** Currently SOG analysis results are available Virus Pathogen Resource (ViPR) as searchable sequence annotations at https://www.viprbrc.org for the following virus families:
 - *Herpesviridae*
 - *Poxviridae*
 - *Coronaviridae*

• **All software** to perform DAIO analyses is freely available at: https://sites.google.com/site/cmzmasek/home/software/forester/daio
Acknowledgements

• Richard Scheuermann, J. Craig Venter Institute
• David Knipe, Department of Microbiology and Immunobiology, Harvard Medical School
• Philip Pellett, Department of Microbiology, Immunology and Biochemistry, Wayne State University School of Medicine
• Yun Zhang, J. Craig Venter Institute
• Entire ViPR/IRD development team at Northrop Grumman
• We thank the primary data providers for sharing their data in public archives, including ViPR and UniProtKB. This work was funded by the National Institute of Allergy and Infectious Diseases (NIH/DHHS) under contract no. HHSN272201400028C to RHS