Next-Generation Sequencing (NGS) Wet-Lab Workflow

Brett E. Pickett, Ph.D.
J. Craig Venter Institute

Applications of Genomics and Bioinformatics to Infectious Diseases
GABRIEL Network
Agenda

• Lab Workflow
 o Material extraction
 o Amplification
 o Barcoding/multiplexing
 o Library preparation
Material Extraction
Amplification
Barcoding/Multiplexing
Library Preparation
NGS Library Prep

1. DNA fragments
2. Blunting by Fill-in and exonuclease
3. Phosphorylation
4. Addition of A-overhang
5. Ligation to adapters
Illumina Workflow

- Library Prep
 - Shear DNA
 - Ligate Adapters
- Cluster generation
 - Bridge PCR
 - Clonal amplification
- Sequencing
Cluster Generation

- Library hybridizes to the oligos attached to the FC surface
- Bridge amplification
- Strands are linearized & seq primer is hybridized
- Clusters contain ~1000 molecules
Illumina Sequencing By Synthesis

Clusters on Flow Cell Surface

Anneal Read 1 primer

Single Molecule View

3' 5'
Sequencing - Imaging
Primary Analysis

- Matrix Calculation – what base is being imaged?
 - Determined during cycles 1-12 of both reads
 - Cross talk
 - Corrected intensities

- Phasing Correction – how accurate is the chemistry?
 - Determined during cycles 1-12 of both reads
 - Phasing
 - Prephasing

- Quality Filtering – is this a high quality cluster?
 - Determined at cycle 25
 - Phred Quality Scores – is the sequence high quality? (Cycle 25 onward)
Real-Time Run Monitoring
ION Torrent PGM

- **Library Construction**: shear DNA and ligate barcoded adapters
 - 1/2 day
- **qPCR**
 - 2 hours
 - template quantitation
- **Emulsion PCR on the One Touch 2**
 - 5 hours
 - adapter attached to ion sphere particles (ISP)
- **Enrich for template-positive beads on the One Touch ES**
 - 1 hour
 - Magnetic beads
- **Initialize PGM & sequence**
 - 4-6 hours

![Preparing an Ion amplicon library by the ligation method](image)

Figure 2A Ion amplicon library design by the ligation method
ION Torrent Sequencing

- 314 chip: 2h 20m
 - 1.2 million wells
 - ~80 Mbp (covers 10 flu viruses at 500x)
- 316 chip: 3h 05m – 6.3 million wells
 - ~500Mbp
- 318 chip: 4h 30m
 - 12 million wells
 - ~800Mbp (covers 96 flu viruses at 600x)
ION Torrent Results

Fast Direct Detection

DNA \rightarrow Ions \rightarrow Sequence
- Nucleotides flow sequentially over Ion semiconductor chip
- One sensor per well per sequencing reaction
- Direct detection of natural DNA extension
- Millions of sequencing reactions per chip
- Fast cycle time, real time detection
Sample Prep Comparison

<table>
<thead>
<tr>
<th>Prep Name</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>SISPA</td>
<td>inexpensive, can start from RNA or DNA, 288 barcodes currently available, can be used for viral discovery, compatible with any sequencing technology</td>
<td>Barcode can bias amplification, potential creation of chimeras</td>
</tr>
<tr>
<td>Nextera</td>
<td>low input (1ng, XT kit), very robust and reproducible, 192 dual index barcodes currently available</td>
<td>You must start from dsDNA, expensive, only compatible with Illumina, ends will always be missing</td>
</tr>
<tr>
<td>Ion Torrent IonXpress Plus Fragment Library Kit</td>
<td>very robust and reproducible, 384 barcodes currently available</td>
<td>You must start from dsDNA, expensive, only compatible with Ion Torrent sequencing</td>
</tr>
</tbody>
</table>
Acknowledgements

- JCVI
 - Vinita Puri
 - Alan Durbin
 - Torrey Williams
 - Kari A. Dilley, Ph.D.
 - Lauren Oldfield, Ph.D.
 - Susmita Shrivastava
 - Nadia Fedorova
 - Mark Novotny
 - Paolo Amedeo, Ph.D.
 - Reed S. Shabman, Ph.D.
 - Gene Tan, Ph.D.

- William Nierman, Ph.D.
- Karen Nelson, Ph.D.

U19AI110819
Questions?

bpickett@jcvi.org